Skip to main content

Multimodal Evals

LangSmith + LangChain support multimodal evaluation. Below is an example evaluating gemini. If you click through to any of the traced LLM calls, it will look like this:

LLM run

# %pip install --upgrade --quiet  langsmith langchain langchain-google-genai
import getpass
import os


def _get_env(var: str):
os.environ[var] = os.environ.get(var) or getpass.getpass(f"{var}: ")


os.environ["LANGCHAIN_TRACING_V2"] = "true"
_get_env("LANGCHAIN_API_KEY")
_get_env("LANGCHAIN_API_KEY")
import langsmith

client = langsmith.Client()

Create Dataset

import requests
from IPython.display import Image

image_url = "https://picsum.photos/seed/flopsum/300/300"

content = requests.get(image_url).content
Image(content)

jpeg

# Not actually a kitten
image_url = "https://picsum.photos/seed/kitten/300/200"
image_content = requests.get(image_url).content
Image(image_content)

jpeg

import base64

dataset_name = "Multimodal Example"
if not client.has_dataset(dataset_name=dataset_name):
ds = client.create_dataset(dataset_name)
client.create_examples(
inputs=[
# We can support urls
{"image": "https://picsum.photos/seed/flopsum/300/300"},
# As well as base64 encoded images
{"image": base64.b64encode(image_content).decode("utf-8")},
],
outputs=[{"label": "espresso"}, {"label": "woods"}],
dataset_name=dataset_name,
)

Chain to test

Let's try out gemini pro's multimodal capability.

from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_google_genai import (
ChatGoogleGenerativeAI,
HarmBlockThreshold,
HarmCategory,
)

llm = ChatGoogleGenerativeAI(
model="gemini-pro-vision",
# Disable spurious safety filters
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
},
)
prompt = ChatPromptTemplate.from_messages(
[
(
"user",
[
{"type": "text", "text": "What is this a picture of?"},
{"type": "image_url", "image_url": "{image_value}"},
],
),
]
)

chain = prompt | llm

chain.invoke({"image_value": image_url})

AIMessage(content=' This is a picture of a path through a pine forest.')

Evaluator

from langsmith.evaluation import run_evaluator


@run_evaluator
def prediction_contains(run, example):
prediction = run.outputs["output"]
label = example.outputs["label"]
score = label in prediction.lower()
return {"key": "prediction_contains", "score": score}

Evaluate

Now it's time to put it all together.

# Our may expect different keys than those stored in the dataset
def to_test(inputs: dict):
img = inputs["image"]
if not img.startswith("https"):
img = f"data:image/png;base64,{img}"
result = chain.invoke({"image_value": img})
return {"output": result.content}
from langchain.smith import RunEvalConfig

test_results = client.run_on_dataset(
dataset_name=dataset_name,
llm_or_chain_factory=to_test,
evaluation=RunEvalConfig(
custom_evaluators=[prediction_contains],
),
)

View the evaluation results for project 'warm-sky-29' at: https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/104245a1-004e-41fc-bfdd-73554e5fd316/compare?selectedSessions=02d1e70b-cc80-47da-8209-3952c16223fe

View all tests for Dataset Multimodal Example at: https://smith.langchain.com/o/ebbaf2eb-769b-4505-aca2-d11de10372a4/datasets/104245a1-004e-41fc-bfdd-73554e5fd316 [------------------------------------------------->] 2/2

test_results.to_dataframe()

| inputs.image | outputs.output | reference.label | feedback.prediction_contains | error | execution_time | run_id | 1170f58f-5239-4d93-827f-67d6b720522f | e1ce282f-a22c-44e2-8740-1e4176afa940 --- | --- | --- | --- | --- | --- | --- | --- | --- | --- /9j/4QDeRXhpZgAASUkqAAgAAAAGABIBAwABAAAAAQAAAB... | This is a picture of a dirt road in a forest. | woods | False | None | 4.059343 | feb6582c-4a6d-4cc1-bb9f-5e2566ffaf62 https://picsum.photos/seed/flopsum/300/300 | This is a picture of a cup of coffee with a s... | espresso | False | None | 4.107023 | b10eb978-d1a1-41a9-957b-2126e719728c

regression graph


Was this page helpful?


You can leave detailed feedback on GitHub.