Evaluation Quick Start
This quick start will get you up and running with our evaluation SDK and Experiments UI.
1. Install LangSmith
- Python
- TypeScript
pip install -U langsmith
yarn add langsmith
2. Create an API key
To create an API key head to the Settings page. Then click Create API Key.
3. Set up your environment
- Shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
4. Run your evaluation
- Python
- TypeScript
from langsmith import evaluate, Client
from langsmith.schemas import Example, Run
# 1. Create and/or select your dataset
client = Client()
dataset = client.clone_public_dataset("https://smith.langchain.com/public/a63525f9-bdf2-4512-83e3-077dc9417f96/d")
# 2. Define an evaluator
# For more info on defining evaluators, see: https://docs.smith.langchain.com/evaluation/how_to_guides/evaluation/evaluate_llm_application#use-custom-evaluators
def is_concise_enough(root_run: Run, example: Example) -> dict:
score = len(root_run.outputs["output"]) < 3 * len(example.outputs["answer"])
return {"key": "is_concise", "score": int(score)}
# 3. Run an evaluation
evaluate(
lambda x: x["question"] + "is a good question. I don't know the answer.",
data=dataset.name,
evaluators=[is_concise_enough],
experiment_prefix="my first experiment "
)
import { Client } from "langsmith";
import { evaluate } from "langsmith/evaluation";
import type { EvaluationResult } from "langsmith/evaluation";
import type { Run, Example } from "langsmith/schemas";
// 1. Define a dataset
const client = new Client();
const datasetName = "my first dataset"
const dataset = await client.clonePublicDataset(
"https://smith.langchain.com/public/a63525f9-bdf2-4512-83e3-077dc9417f96/d",
{ datasetName: datasetName }
)
// 2. Define an evaluator
function isConcise(rootRun: Run, example: Example): EvaluationResult {
const score = rootRun.outputs?.outputs.length < 3 * example.outputs?.answer.length;
return { key: "is_concise", score: score };
}
// 3. Run an evaluation
// For more info on evaluators, see: https://docs.smith.langchain.com/concepts/evaluation#evaluators
await evaluate(
(exampleInput) => {
return {
answer: exampleInput.question + " Good question. I don't know the answer"
};
}, {
data: datasetName,
evaluators: [isConcise],
experimentPrefix: "my first experiment ",
});
5. View Experiments UI
Click the link printed out by your evaluation run to access the LangSmith experiments UI, and explore the results of your evaluation.