Source code for langsmith.evaluation.evaluator

"""This module contains the evaluator classes for evaluating runs."""

from __future__ import annotations

import asyncio
import inspect
import uuid
from abc import abstractmethod
from typing import (
    Any,
    Awaitable,
    Callable,
    Dict,
    List,
    Literal,
    Optional,
    Sequence,
    Union,
    cast,
)

from typing_extensions import TypedDict

from langsmith import schemas

try:
    from pydantic.v1 import (  # type: ignore[import]
        BaseModel,
        Field,
        ValidationError,
        validator,
    )
except ImportError:
    from pydantic import (  # type: ignore[assignment]
        BaseModel,
        Field,
        ValidationError,
        validator,
    )

import logging
from functools import wraps

from langsmith.schemas import SCORE_TYPE, VALUE_TYPE, Example, Run

logger = logging.getLogger(__name__)


[docs] class Category(TypedDict): """A category for categorical feedback.""" value: Optional[Union[float, int]] """The numeric score/ordinal corresponding to this category.""" label: str """The label for this category."""
[docs] class FeedbackConfig(TypedDict, total=False): """Configuration to define a type of feedback. Applied on on the first creation of a feedback_key. """ type: Literal["continuous", "categorical", "freeform"] """The type of feedback.""" min: Optional[Union[float, int]] """The minimum permitted value (if continuous type).""" max: Optional[Union[float, int]] """The maximum value permitted value (if continuous type).""" categories: Optional[List[Union[Category, dict]]]
[docs] class EvaluationResult(BaseModel): """Evaluation result.""" key: str """The aspect, metric name, or label for this evaluation.""" score: SCORE_TYPE = None """The numeric score for this evaluation.""" value: VALUE_TYPE = None """The value for this evaluation, if not numeric.""" comment: Optional[str] = None """An explanation regarding the evaluation.""" correction: Optional[Dict] = None """What the correct value should be, if applicable.""" evaluator_info: Dict = Field(default_factory=dict) """Additional information about the evaluator.""" feedback_config: Optional[Union[FeedbackConfig, dict]] = None """The configuration used to generate this feedback.""" source_run_id: Optional[Union[uuid.UUID, str]] = None """The ID of the trace of the evaluator itself.""" target_run_id: Optional[Union[uuid.UUID, str]] = None """The ID of the trace this evaluation is applied to. If none provided, the evaluation feedback is applied to the root trace being.""" extra: Optional[Dict] = None """Metadata for the evaluator run.""" class Config: """Pydantic model configuration.""" allow_extra = False
[docs] @validator("value", pre=True) def check_value_non_numeric(cls, v, values): """Check that the value is not numeric.""" # If a score isn't provided and the value is numeric # it's more likely the user intended use the score field if "score" not in values or values["score"] is None: if isinstance(v, (int, float)): logger.warning( "Numeric values should be provided in" " the 'score' field, not 'value'." f" Got: {v}" ) return v
[docs] class EvaluationResults(TypedDict, total=False): """Batch evaluation results. This makes it easy for your evaluator to return multiple metrics at once. """ results: List[EvaluationResult] """The evaluation results."""
[docs] class RunEvaluator: """Evaluator interface class."""
[docs] @abstractmethod def evaluate_run( self, run: Run, example: Optional[Example] = None ) -> Union[EvaluationResult, EvaluationResults]: """Evaluate an example."""
[docs] async def aevaluate_run( self, run: Run, example: Optional[Example] = None ) -> Union[EvaluationResult, EvaluationResults]: """Evaluate an example asynchronously.""" return await asyncio.get_running_loop().run_in_executor( None, self.evaluate_run, run, example )
_RUNNABLE_OUTPUT = Union[EvaluationResult, EvaluationResults, dict]
[docs] class ComparisonEvaluationResult(BaseModel): """Feedback scores for the results of comparative evaluations. These are generated by functions that compare two or more runs, returning a ranking or other feedback. """ key: str """The aspect, metric name, or label for this evaluation.""" scores: Dict[Union[uuid.UUID, str], SCORE_TYPE] """The scores for each run in the comparison.""" source_run_id: Optional[Union[uuid.UUID, str]] = None """The ID of the trace of the evaluator itself.""" comment: Optional[Union[str, Dict[Union[uuid.UUID, str], str]]] = None """Comment for the scores. If a string, it's shared across all target runs. If a dict, it maps run IDs to individual comments."""
_COMPARISON_OUTPUT = Union[ComparisonEvaluationResult, dict]
[docs] class DynamicRunEvaluator(RunEvaluator): """A dynamic evaluator that wraps a function and transforms it into a `RunEvaluator`. This class is designed to be used with the `@run_evaluator` decorator, allowing functions that take a `Run` and an optional `Example` as arguments, and return an `EvaluationResult` or `EvaluationResults`, to be used as instances of `RunEvaluator`. Attributes: func (Callable): The function that is wrapped by this evaluator. """ # noqa: E501
[docs] def __init__( self, func: Callable[ [Run, Optional[Example]], Union[_RUNNABLE_OUTPUT, Awaitable[_RUNNABLE_OUTPUT]], ], # Async function to be used for async evaluation. Optional afunc: Optional[ Callable[ [Run, Optional[Example]], Awaitable[_RUNNABLE_OUTPUT], ] ] = None, ): """Initialize the DynamicRunEvaluator with a given function. Args: func (Callable): A function that takes a `Run` and an optional `Example` as arguments, and returns a dict or `ComparisonEvaluationResult`. """ func = _normalize_evaluator_func(func) if afunc: afunc = _normalize_evaluator_func(afunc) # type: ignore[assignment] wraps(func)(self) from langsmith import run_helpers # type: ignore if afunc is not None: self.afunc = run_helpers.ensure_traceable( afunc, process_inputs=_serialize_inputs ) self._name = getattr(afunc, "__name__", "DynamicRunEvaluator") if inspect.iscoroutinefunction(func): if afunc is not None: raise TypeError( "Func was provided as a coroutine function, but afunc was " "also provided. If providing both, func should be a regular " "function to avoid ambiguity." ) self.afunc = run_helpers.ensure_traceable( func, process_inputs=_serialize_inputs ) self._name = getattr(func, "__name__", "DynamicRunEvaluator") else: self.func = run_helpers.ensure_traceable( cast(Callable[[Run, Optional[Example]], _RUNNABLE_OUTPUT], func), process_inputs=_serialize_inputs, ) self._name = getattr(func, "__name__", "DynamicRunEvaluator")
def _coerce_evaluation_result( self, result: Union[EvaluationResult, dict], source_run_id: uuid.UUID, allow_no_key: bool = False, ) -> EvaluationResult: if isinstance(result, EvaluationResult): if not result.source_run_id: result.source_run_id = source_run_id return result try: if not result: raise ValueError( "Expected an EvaluationResult object, or dict with a metric" f" 'key' and optional 'score'; got empty result: {result}" ) if "key" not in result and allow_no_key: result["key"] = self._name if all(k not in result for k in ("score", "value", "comment")): raise ValueError( "Expected an EvaluationResult object, or dict with a metric" f" 'key' and optional 'score' or categorical 'value'; got {result}" ) return EvaluationResult(**{"source_run_id": source_run_id, **result}) except ValidationError as e: raise ValueError( "Expected an EvaluationResult object, or dict with a metric" f" 'key' and optional 'score'; got {result}" ) from e def _coerce_evaluation_results( self, results: Union[dict, EvaluationResults], source_run_id: uuid.UUID, ) -> Union[EvaluationResult, EvaluationResults]: if "results" in results: cp = results.copy() cp["results"] = [ self._coerce_evaluation_result(r, source_run_id=source_run_id) for r in results["results"] ] return EvaluationResults(**cp) return self._coerce_evaluation_result( cast(dict, results), source_run_id=source_run_id, allow_no_key=True ) def _format_result( self, result: Union[ EvaluationResult, EvaluationResults, dict, str, int, bool, float, list ], source_run_id: uuid.UUID, ) -> Union[EvaluationResult, EvaluationResults]: if isinstance(result, EvaluationResult): if not result.source_run_id: result.source_run_id = source_run_id return result result = _format_evaluator_result(result) return self._coerce_evaluation_results(result, source_run_id) @property def is_async(self) -> bool: """Check if the evaluator function is asynchronous. Returns: bool: True if the evaluator function is asynchronous, False otherwise. """ return hasattr(self, "afunc")
[docs] def evaluate_run( self, run: Run, example: Optional[Example] = None ) -> Union[EvaluationResult, EvaluationResults]: """Evaluate a run using the wrapped function. This method directly invokes the wrapped function with the provided arguments. Args: run (Run): The run to be evaluated. example (Optional[Example]): An optional example to be used in the evaluation. Returns: Union[EvaluationResult, EvaluationResults]: The result of the evaluation. """ # noqa: E501 if not hasattr(self, "func"): running_loop = asyncio.get_event_loop() if running_loop.is_running(): raise RuntimeError( "Cannot call `evaluate_run` on an async run evaluator from" " within an running event loop. Use `aevaluate_run` instead." ) else: return running_loop.run_until_complete(self.aevaluate_run(run, example)) source_run_id = uuid.uuid4() metadata: Dict[str, Any] = {"target_run_id": run.id} if getattr(run, "session_id", None): metadata["experiment"] = str(run.session_id) result = self.func( run, example, langsmith_extra={"run_id": source_run_id, "metadata": metadata}, ) return self._format_result(result, source_run_id)
[docs] async def aevaluate_run(self, run: Run, example: Optional[Example] = None): """Evaluate a run asynchronously using the wrapped async function. This method directly invokes the wrapped async function with the provided arguments. Args: run (Run): The run to be evaluated. example (Optional[Example]): An optional example to be used in the evaluation. Returns: Union[EvaluationResult, EvaluationResults]: The result of the evaluation. """ if not hasattr(self, "afunc"): return await super().aevaluate_run(run, example) source_run_id = uuid.uuid4() metadata: Dict[str, Any] = {"target_run_id": run.id} if getattr(run, "session_id", None): metadata["experiment"] = str(run.session_id) result = await self.afunc( run, example, langsmith_extra={"run_id": source_run_id, "metadata": metadata}, ) return self._format_result(result, source_run_id)
def __call__( self, run: Run, example: Optional[Example] = None ) -> Union[EvaluationResult, EvaluationResults]: """Make the evaluator callable, allowing it to be used like a function. This method enables the evaluator instance to be called directly, forwarding the call to `evaluate_run`. Args: run (Run): The run to be evaluated. example (Optional[Example]): An optional example to be used in the evaluation. Returns: Union[EvaluationResult, EvaluationResults]: The result of the evaluation. """ # noqa: E501 return self.evaluate_run(run, example) def __repr__(self) -> str: """Represent the DynamicRunEvaluator object.""" return f"<DynamicRunEvaluator {self._name}>"
[docs] def run_evaluator( func: Callable[ [Run, Optional[Example]], Union[_RUNNABLE_OUTPUT, Awaitable[_RUNNABLE_OUTPUT]] ], ): """Create a run evaluator from a function. Decorator that transforms a function into a `RunEvaluator`. """ return DynamicRunEvaluator(func)
_MAXSIZE = 10_000 def _maxsize_repr(obj: Any): s = repr(obj) if len(s) > _MAXSIZE: s = s[: _MAXSIZE - 4] + "...)" return s def _serialize_inputs(inputs: dict) -> dict: run_truncated = _maxsize_repr(inputs.get("run")) example_truncated = _maxsize_repr(inputs.get("example")) return {"run": run_truncated, "example": example_truncated}
[docs] class DynamicComparisonRunEvaluator: """Compare predictions (as traces) from 2 or more runs."""
[docs] def __init__( self, func: Callable[ [Sequence[Run], Optional[Example]], Union[_COMPARISON_OUTPUT, Awaitable[_COMPARISON_OUTPUT]], ], # Async function to be used for async evaluation. Optional afunc: Optional[ Callable[ [Sequence[Run], Optional[Example]], Awaitable[_COMPARISON_OUTPUT], ] ] = None, ): """Initialize the DynamicRunEvaluator with a given function. Args: func (Callable): A function that takes a `Run` and an optional `Example` as arguments, and returns an `EvaluationResult` or `EvaluationResults`. """ func = _normalize_comparison_evaluator_func(func) if afunc: afunc = _normalize_comparison_evaluator_func(afunc) # type: ignore[assignment] wraps(func)(self) from langsmith import run_helpers # type: ignore if afunc is not None: self.afunc = run_helpers.ensure_traceable( afunc, process_inputs=_serialize_inputs ) self._name = getattr(afunc, "__name__", "DynamicRunEvaluator") if inspect.iscoroutinefunction(func): if afunc is not None: raise TypeError( "Func was provided as a coroutine function, but afunc was " "also provided. If providing both, func should be a regular " "function to avoid ambiguity." ) self.afunc = run_helpers.ensure_traceable( func, process_inputs=_serialize_inputs ) self._name = getattr(func, "__name__", "DynamicRunEvaluator") else: self.func = run_helpers.ensure_traceable( cast( Callable[ [Sequence[Run], Optional[Example]], _COMPARISON_OUTPUT, ], func, ), process_inputs=_serialize_inputs, ) self._name = getattr(func, "__name__", "DynamicRunEvaluator")
@property def is_async(self) -> bool: """Check if the evaluator function is asynchronous. Returns: bool: True if the evaluator function is asynchronous, False otherwise. """ return hasattr(self, "afunc")
[docs] def compare_runs( self, runs: Sequence[Run], example: Optional[Example] = None ) -> ComparisonEvaluationResult: """Compare runs to score preferences. Args: runs: A list of runs to compare. example: An optional example to be used in the evaluation. """ # noqa: E501 if not hasattr(self, "func"): running_loop = asyncio.get_event_loop() if running_loop.is_running(): raise RuntimeError( "Cannot call `evaluate_run` on an async run evaluator from" " within an running event loop. Use `aevaluate_run` instead." ) else: return running_loop.run_until_complete( self.acompare_runs(runs, example) ) source_run_id = uuid.uuid4() tags = self._get_tags(runs) # TODO: Add metadata for the "comparison experiment" here result = self.func( runs, example, langsmith_extra={"run_id": source_run_id, "tags": tags}, ) return self._format_results(result, source_run_id, runs)
[docs] async def acompare_runs( self, runs: Sequence[Run], example: Optional[Example] = None ) -> ComparisonEvaluationResult: """Evaluate a run asynchronously using the wrapped async function. This method directly invokes the wrapped async function with the provided arguments. Args: runs (Run): The runs to be evaluated. example (Optional[Example]): An optional example to be used in the evaluation. Returns: ComparisonEvaluationResult: The result of the evaluation. """ if not hasattr(self, "afunc"): return self.compare_runs(runs, example) source_run_id = uuid.uuid4() tags = self._get_tags(runs) # TODO: Add metadata for the "comparison experiment" here result = await self.afunc( runs, example, langsmith_extra={"run_id": source_run_id, "tags": tags}, ) return self._format_results(result, source_run_id, runs)
def __call__( self, runs: Sequence[Run], example: Optional[Example] = None ) -> ComparisonEvaluationResult: """Make the evaluator callable, allowing it to be used like a function. This method enables the evaluator instance to be called directly, forwarding the call to `evaluate_run`. Args: run (Run): The run to be evaluated. example (Optional[Example]): An optional example to be used in the evaluation. Returns: ComparisonEvaluationResult: The result of the evaluation. """ # noqa: E501 return self.compare_runs(runs, example) def __repr__(self) -> str: """Represent the DynamicRunEvaluator object.""" return f"<DynamicComparisonRunEvaluator {self._name}>" @staticmethod def _get_tags(runs: Sequence[Run]) -> List[str]: """Extract tags from runs.""" # Add tags to support filtering tags = [] for run in runs: tags.append("run:" + str(run.id)) if getattr(run, "session_id", None): tags.append("experiment:" + str(run.session_id)) return tags def _format_results( self, result: Union[dict, list, ComparisonEvaluationResult], source_run_id: uuid.UUID, runs: Sequence[Run], ) -> ComparisonEvaluationResult: if isinstance(result, ComparisonEvaluationResult): if not result.source_run_id: result.source_run_id = source_run_id return result elif isinstance(result, list): result = { "scores": {run.id: score for run, score in zip(runs, result)}, "key": self._name, "source_run_id": source_run_id, } elif isinstance(result, dict): if "key" not in result: result["key"] = self._name else: msg = ( "Expected 'dict', 'list' or 'ComparisonEvaluationResult' result " f"object. Received: {result=}" ) raise ValueError(msg) try: return ComparisonEvaluationResult( **{"source_run_id": source_run_id, **result} ) except ValidationError as e: raise ValueError( f"Expected a dictionary with a 'key' and dictionary of scores mapping" "run IDs to numeric scores, or ComparisonEvaluationResult object," f" got {result}" ) from e
[docs] def comparison_evaluator( func: Callable[ [Sequence[Run], Optional[Example]], Union[_COMPARISON_OUTPUT, Awaitable[_COMPARISON_OUTPUT]], ], ) -> DynamicComparisonRunEvaluator: """Create a comaprison evaluator from a function.""" return DynamicComparisonRunEvaluator(func)
def _normalize_evaluator_func( func: Callable, ) -> Union[ Callable[[Run, Optional[Example]], _RUNNABLE_OUTPUT], Callable[[Run, Optional[Example]], Awaitable[_RUNNABLE_OUTPUT]], ]: supported_args = ( "run", "example", "inputs", "outputs", "reference_outputs", "attachments", ) sig = inspect.signature(func) positional_args = [ pname for pname, p in sig.parameters.items() if p.kind in (p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY) ] if not positional_args or ( not all(pname in supported_args for pname in positional_args) and len(positional_args) != 2 ): msg = ( f"Invalid evaluator function. Must have at least one positional " f"argument. Supported positional arguments are {supported_args}. Please " f"see https://docs.smith.langchain.com/evaluation/how_to_guides/evaluation/evaluate_llm_application#use-custom-evaluators" # noqa: E501 ) raise ValueError(msg) elif not all( pname in supported_args for pname in positional_args ) or positional_args == ["run", "example"]: # For backwards compatibility we assume custom arg names are Run and Example # types, respectively. return func else: if inspect.iscoroutinefunction(func): async def awrapper( run: Run, example: Optional[Example] ) -> _RUNNABLE_OUTPUT: arg_map = { "run": run, "example": example, "inputs": example.inputs if example else {}, "outputs": run.outputs or {}, "attachments": example.attachments or {} if example else {}, "reference_outputs": example.outputs or {} if example else {}, } args = (arg_map[arg] for arg in positional_args) return await func(*args) awrapper.__name__ = ( getattr(func, "__name__") if hasattr(func, "__name__") else awrapper.__name__ ) return awrapper # type: ignore[return-value] else: def wrapper(run: Run, example: Example) -> _RUNNABLE_OUTPUT: arg_map = { "run": run, "example": example, "inputs": example.inputs if example else {}, "outputs": run.outputs or {}, "attachments": example.attachments or {}, "reference_outputs": example.outputs or {} if example else {}, } args = (arg_map[arg] for arg in positional_args) return func(*args) wrapper.__name__ = ( getattr(func, "__name__") if hasattr(func, "__name__") else wrapper.__name__ ) return wrapper # type: ignore[return-value] def _normalize_comparison_evaluator_func( func: Callable, ) -> Union[ Callable[[Sequence[Run], Optional[Example]], _COMPARISON_OUTPUT], Callable[[Sequence[Run], Optional[Example]], Awaitable[_COMPARISON_OUTPUT]], ]: supported_args = ("runs", "example", "inputs", "outputs", "reference_outputs") sig = inspect.signature(func) positional_args = [ pname for pname, p in sig.parameters.items() if p.kind in (p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY) ] if not positional_args or ( not all(pname in supported_args for pname in positional_args) and len(positional_args) != 2 ): msg = ( f"Invalid evaluator function. Must have at least one positional " f"argument. Supported positional arguments are {supported_args}. Please " f"see https://docs.smith.langchain.com/evaluation/how_to_guides/evaluation/evaluate_llm_application#use-custom-evaluators" # noqa: E501 ) raise ValueError(msg) # For backwards compatibility we assume custom arg names are List[Run] and # List[Example] types, respectively. elif not all( pname in supported_args for pname in positional_args ) or positional_args == ["runs", "example"]: return func else: if inspect.iscoroutinefunction(func): async def awrapper( runs: Sequence[Run], example: Optional[Example] ) -> _COMPARISON_OUTPUT: arg_map = { "runs": runs, "example": example, "inputs": example.inputs if example else {}, "outputs": [run.outputs or {} for run in runs], "reference_outputs": example.outputs or {} if example else {}, } args = (arg_map[arg] for arg in positional_args) return await func(*args) awrapper.__name__ = ( getattr(func, "__name__") if hasattr(func, "__name__") else awrapper.__name__ ) return awrapper # type: ignore[return-value] else: def wrapper(runs: Sequence[Run], example: Example) -> _COMPARISON_OUTPUT: arg_map = { "runs": runs, "example": example, "inputs": example.inputs if example else {}, "outputs": [run.outputs or {} for run in runs], "reference_outputs": example.outputs or {} if example else {}, } args = (arg_map[arg] for arg in positional_args) return func(*args) wrapper.__name__ = ( getattr(func, "__name__") if hasattr(func, "__name__") else wrapper.__name__ ) return wrapper # type: ignore[return-value] def _format_evaluator_result( result: Union[EvaluationResults, dict, str, int, bool, float, list], ) -> Union[EvaluationResults, dict]: if isinstance(result, (bool, float, int)): result = {"score": result} elif not result: raise ValueError( f"Expected a non-empty dict, str, bool, int, float, list, " f"EvaluationResult, or EvaluationResults. Got {result}" ) elif isinstance(result, list): if not all(isinstance(x, dict) for x in result): raise ValueError( f"Expected a list of dicts or EvaluationResults. Received {result}." ) result = {"results": result} # type: ignore[misc] elif isinstance(result, str): result = {"value": result} elif isinstance(result, dict): pass else: raise ValueError( f"Expected a dict, str, bool, int, float, list, EvaluationResult, or " f"EvaluationResults. Got {result}" ) return result SUMMARY_EVALUATOR_T = Union[ Callable[ [Sequence[schemas.Run], Sequence[schemas.Example]], Union[EvaluationResult, EvaluationResults], ], Callable[ [List[schemas.Run], List[schemas.Example]], Union[EvaluationResult, EvaluationResults], ], ] def _normalize_summary_evaluator(func: Callable) -> SUMMARY_EVALUATOR_T: supported_args = ("runs", "examples", "inputs", "outputs", "reference_outputs") sig = inspect.signature(func) positional_args = [ pname for pname, p in sig.parameters.items() if p.kind in (p.POSITIONAL_OR_KEYWORD, p.POSITIONAL_ONLY) ] if not positional_args or ( not all(pname in supported_args for pname in positional_args) and len(positional_args) != 2 ): msg = ( f"Invalid evaluator function. Must have at least one positional " f"argument. Supported positional arguments are {supported_args}." ) if positional_args: msg += f" Received positional arguments {positional_args}." raise ValueError(msg) # For backwards compatibility we assume custom arg names are Sequence[Run] and # Sequence[Example] types, respectively. elif not all( pname in supported_args for pname in positional_args ) or positional_args == ["runs", "examples"]: return func else: def wrapper( runs: Sequence[schemas.Run], examples: Sequence[schemas.Example] ) -> Union[EvaluationResult, EvaluationResults]: arg_map = { "runs": runs, "examples": examples, "inputs": [example.inputs for example in examples], "outputs": [run.outputs or {} for run in runs], "reference_outputs": [example.outputs or {} for example in examples], } args = (arg_map[arg] for arg in positional_args) result = func(*args) if isinstance(result, EvaluationResult): return result return _format_evaluator_result(result) # type: ignore[return-value] wrapper.__name__ = ( getattr(func, "__name__") if hasattr(func, "__name__") else wrapper.__name__ ) return wrapper # type: ignore[return-value]