[docs]asyncdefaevaluate(target:Union[ATARGET_T,AsyncIterable[dict],Runnable,str,uuid.UUID,schemas.TracerSession],/,data:Union[DATA_T,AsyncIterable[schemas.Example],Iterable[schemas.Example],None]=None,evaluators:Optional[Sequence[Union[EVALUATOR_T,AEVALUATOR_T]]]=None,summary_evaluators:Optional[Sequence[SUMMARY_EVALUATOR_T]]=None,metadata:Optional[dict]=None,experiment_prefix:Optional[str]=None,description:Optional[str]=None,max_concurrency:Optional[int]=0,num_repetitions:int=1,client:Optional[langsmith.Client]=None,blocking:bool=True,experiment:Optional[Union[schemas.TracerSession,str,uuid.UUID]]=None,upload_results:bool=True,**kwargs:Any,)->AsyncExperimentResults:r"""Evaluate an async target system on a given dataset. Args: target (AsyncCallable[[dict], dict] | AsyncIterable[dict] | Runnable | EXPERIMENT_T | Tuple[EXPERIMENT_T, EXPERIMENT_T]): The target system or experiment(s) to evaluate. Can be an async function that takes a dict and returns a dict, a langchain Runnable, an existing experiment ID, or a two-tuple of experiment IDs. data (Union[DATA_T, AsyncIterable[schemas.Example]]): The dataset to evaluate on. Can be a dataset name, a list of examples, an async generator of examples, or an async iterable of examples. evaluators (Optional[Sequence[EVALUATOR_T]]): A list of evaluators to run on each example. Defaults to None. summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): A list of summary evaluators to run on the entire dataset. Defaults to None. metadata (Optional[dict]): Metadata to attach to the experiment. Defaults to None. experiment_prefix (Optional[str]): A prefix to provide for your experiment name. Defaults to None. description (Optional[str]): A description of the experiment. max_concurrency (int | None): The maximum number of concurrent evaluations to run. If None then no limit is set. If 0 then no concurrency. Defaults to 0. num_repetitions (int): The number of times to run the evaluation. Each item in the dataset will be run and evaluated this many times. Defaults to 1. client (Optional[langsmith.Client]): The LangSmith client to use. Defaults to None. blocking (bool): Whether to block until the evaluation is complete. Defaults to True. experiment (Optional[schemas.TracerSession]): An existing experiment to extend. If provided, experiment_prefix is ignored. For advanced usage only. load_nested: Whether to load all child runs for the experiment. Default is to only load the top-level root runs. Should only be specified when evaluating an existing experiment. Returns: AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results. Environment: - LANGSMITH_TEST_CACHE: If set, API calls will be cached to disk to save time and cost during testing. Recommended to commit the cache files to your repository for faster CI/CD runs. Requires the 'langsmith[vcr]' package to be installed. Examples: >>> from typing import Sequence >>> from langsmith import Client, aevaluate >>> from langsmith.schemas import Example, Run >>> client = Client() >>> dataset = client.clone_public_dataset( ... "https://smith.langchain.com/public/419dcab2-1d66-4b94-8901-0357ead390df/d" ... ) >>> dataset_name = "Evaluate Examples" Basic usage: >>> def accuracy(run: Run, example: Example): ... # Row-level evaluator for accuracy. ... pred = run.outputs["output"] ... expected = example.outputs["answer"] ... return {"score": expected.lower() == pred.lower()} >>> def precision(runs: Sequence[Run], examples: Sequence[Example]): ... # Experiment-level evaluator for precision. ... # TP / (TP + FP) ... predictions = [run.outputs["output"].lower() for run in runs] ... expected = [example.outputs["answer"].lower() for example in examples] ... # yes and no are the only possible answers ... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"]) ... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)]) ... return {"score": tp / (tp + fp)} >>> import asyncio >>> async def apredict(inputs: dict) -> dict: ... # This can be any async function or just an API call to your app. ... await asyncio.sleep(0.1) ... return {"output": "Yes"} >>> results = asyncio.run( ... aevaluate( ... apredict, ... data=dataset_name, ... evaluators=[accuracy], ... summary_evaluators=[precision], ... experiment_prefix="My Experiment", ... description="Evaluate the accuracy of the model asynchronously.", ... metadata={ ... "my-prompt-version": "abcd-1234", ... }, ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... Evaluating over only a subset of the examples using an async generator: >>> async def example_generator(): ... examples = client.list_examples(dataset_name=dataset_name, limit=5) ... for example in examples: ... yield example >>> results = asyncio.run( ... aevaluate( ... apredict, ... data=example_generator(), ... evaluators=[accuracy], ... summary_evaluators=[precision], ... experiment_prefix="My Subset Experiment", ... description="Evaluate a subset of examples asynchronously.", ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... Streaming each prediction to more easily + eagerly debug. >>> results = asyncio.run( ... aevaluate( ... apredict, ... data=dataset_name, ... evaluators=[accuracy], ... summary_evaluators=[precision], ... experiment_prefix="My Streaming Experiment", ... description="Streaming predictions for debugging.", ... blocking=False, ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... >>> async def aenumerate(iterable): ... async for elem in iterable: ... print(elem) >>> asyncio.run(aenumerate(results)) Running without concurrency: >>> results = asyncio.run( ... aevaluate( ... apredict, ... data=dataset_name, ... evaluators=[accuracy], ... summary_evaluators=[precision], ... experiment_prefix="My Experiment Without Concurrency", ... description="This was run without concurrency.", ... max_concurrency=0, ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... Using Async evaluators: >>> async def helpfulness(run: Run, example: Example): ... # Row-level evaluator for helpfulness. ... await asyncio.sleep(5) # Replace with your LLM API call ... return {"score": run.outputs["output"] == "Yes"} >>> results = asyncio.run( ... aevaluate( ... apredict, ... data=dataset_name, ... evaluators=[helpfulness], ... summary_evaluators=[precision], ... experiment_prefix="My Helpful Experiment", ... description="Applying async evaluators example.", ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... .. versionchanged:: 0.2.0 'max_concurrency' default updated from None (no limit on concurrency) to 0 (no concurrency at all). """# noqa: E501ifisinstance(target,(str,uuid.UUID,schemas.TracerSession)):invalid_args={"num_repetitions":num_repetitions>1,"experiment":bool(experiment),"upload_results":notupload_results,"experiment_prefix":bool(experiment_prefix),"data":bool(data),}ifany(invalid_args.values()):msg=(f"Received invalid arguments. "f"{tuple(kfork,vininvalid_args.items()ifv)} should not be "f"specified when target is an existing experiment.")raiseValueError(msg)target_id=targetifisinstance(target,(str,uuid.UUID))elsetarget.idlogger.debug(f"Running evaluation over existing experiment {target_id}...")returnawaitaevaluate_existing(target,evaluators=evaluators,summary_evaluators=summary_evaluators,metadata=metadata,max_concurrency=max_concurrency,client=client,blocking=blocking,**kwargs,)elifisinstance(target,(list,tuple)):msg=("Running a comparison of two existing experiments asynchronously is not ""currently supported. Please use the `evaluate()` method instead and make ""sure that your evaluators are defined as synchronous functions.")raiseValueError(msg)elifkwargs:msg=(f"Received unsupported arguments {kwargs}. These arguments are not "f"supported when creating a new experiment.")raiseValueError(msg)elifnotdata:msg="Must specify 'data' when running evaluations over a target function."raiseValueError(msg)elifexperimentandexperiment_prefix:msg=("Expected at most one of 'experiment' or 'experiment_prefix',"" but both were provided. "f"Got: experiment={experiment}, experiment_prefix={experiment_prefix}")raiseValueError(msg)else:ifnotupload_results:_warn_once("'upload_results' parameter is in beta.")logger.debug(f"Running evaluation over target system {target}...")returnawait_aevaluate(target,data=data,evaluators=evaluators,summary_evaluators=summary_evaluators,metadata=metadata,experiment_prefix=experiment_prefix,description=description,max_concurrency=max_concurrency,num_repetitions=num_repetitions,client=client,blocking=blocking,experiment=experiment,upload_results=upload_results,)
[docs]asyncdefaevaluate_existing(experiment:Union[str,uuid.UUID,schemas.TracerSession],/,evaluators:Optional[Sequence[Union[EVALUATOR_T,AEVALUATOR_T]]]=None,summary_evaluators:Optional[Sequence[SUMMARY_EVALUATOR_T]]=None,metadata:Optional[dict]=None,max_concurrency:Optional[int]=0,client:Optional[langsmith.Client]=None,load_nested:bool=False,blocking:bool=True,)->AsyncExperimentResults:r"""Evaluate existing experiment runs asynchronously. Args: experiment (Union[str, uuid.UUID]): The identifier of the experiment to evaluate. evaluators (Optional[Sequence[EVALUATOR_T]]): Optional sequence of evaluators to use for individual run evaluation. summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): Optional sequence of evaluators to apply over the entire dataset. metadata (Optional[dict]): Optional metadata to include in the evaluation results. max_concurrency (int | None): The maximum number of concurrent evaluations to run. If None then no limit is set. If 0 then no concurrency. Defaults to 0. client (Optional[langsmith.Client]): Optional Langsmith client to use for evaluation. load_nested: Whether to load all child runs for the experiment. Default is to only load the top-level root runs. blocking (bool): Whether to block until evaluation is complete. Returns: AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results. Examples: Define your evaluators >>> from typing import Sequence >>> from langsmith.schemas import Example, Run >>> def accuracy(run: Run, example: Example): ... # Row-level evaluator for accuracy. ... pred = run.outputs["output"] ... expected = example.outputs["answer"] ... return {"score": expected.lower() == pred.lower()} >>> def precision(runs: Sequence[Run], examples: Sequence[Example]): ... # Experiment-level evaluator for precision. ... # TP / (TP + FP) ... predictions = [run.outputs["output"].lower() for run in runs] ... expected = [example.outputs["answer"].lower() for example in examples] ... # yes and no are the only possible answers ... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"]) ... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)]) ... return {"score": tp / (tp + fp)} Load the experiment and run the evaluation. >>> from langsmith import aevaluate, aevaluate_existing >>> dataset_name = "Evaluate Examples" >>> async def apredict(inputs: dict) -> dict: ... # This can be any async function or just an API call to your app. ... await asyncio.sleep(0.1) ... return {"output": "Yes"} >>> # First run inference on the dataset ... results = asyncio.run( ... aevaluate( ... apredict, ... data=dataset_name, ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... Then evaluate the results >>> experiment_name = "My Experiment:64e6e91" # Or manually specify >>> results = asyncio.run( ... aevaluate_existing( ... experiment_name, ... evaluators=[accuracy], ... summary_evaluators=[precision], ... ) ... ) # doctest: +ELLIPSIS View the evaluation results for experiment:... """# noqa: E501client=clientorrun_trees.get_cached_client()project=(experimentifisinstance(experiment,schemas.TracerSession)else(awaitaitertools.aio_to_thread(_load_experiment,experiment,client)))runs=awaitaitertools.aio_to_thread(_load_traces,experiment,client,load_nested=load_nested)data_map=awaitaitertools.aio_to_thread(_load_examples_map,client,project)data=[data_map[run.reference_example_id]forruninruns]returnawait_aevaluate(runs,data=data,evaluators=evaluators,summary_evaluators=summary_evaluators,metadata=metadata,max_concurrency=max_concurrency,client=client,blocking=blocking,experiment=project,)
asyncdef_aevaluate(target:Union[ATARGET_T,AsyncIterable[dict],Iterable[schemas.Run],Runnable],/,data:Union[DATA_T,AsyncIterable[schemas.Example]],evaluators:Optional[Sequence[Union[EVALUATOR_T,AEVALUATOR_T]]]=None,summary_evaluators:Optional[Sequence[SUMMARY_EVALUATOR_T]]=None,metadata:Optional[dict]=None,experiment_prefix:Optional[str]=None,description:Optional[str]=None,max_concurrency:Optional[int]=None,num_repetitions:int=1,client:Optional[langsmith.Client]=None,blocking:bool=True,experiment:Optional[Union[schemas.TracerSession,str,uuid.UUID]]=None,upload_results:bool=True,)->AsyncExperimentResults:is_async_target=(asyncio.iscoroutinefunction(target)or(hasattr(target,"__aiter__")andasyncio.iscoroutine(target.__aiter__()))or_is_langchain_runnable(target))client=clientorrt.get_cached_client()runs=Noneifis_async_targetelsecast(Iterable[schemas.Run],target)experiment_,runs=awaitaitertools.aio_to_thread(_resolve_experiment,experiment,runs,client,)num_include_attachments=int(_target_include_attachments(target))+_evaluators_include_attachments(evaluators)manager=await_AsyncExperimentManager(data,client=client,metadata=metadata,experiment=experiment_orexperiment_prefix,description=description,num_repetitions=num_repetitions,runs=runs,include_attachments=num_include_attachments>0,reuse_attachments=num_repetitions*num_include_attachments>1,upload_results=upload_results,).astart()cache_dir=ls_utils.get_cache_dir(None)ifcache_dirisnotNone:dsid=awaitmanager.get_dataset_id()cache_path=pathlib.Path(cache_dir)/f"{dsid}.yaml"else:cache_path=Nonewithls_utils.with_optional_cache(cache_path,ignore_hosts=[client.api_url]):ifis_async_target:ifevaluators:# Run predictions and evaluations in a single pipelinemanager=awaitmanager.awith_predictions_and_evaluators(cast(ATARGET_T,target),evaluators,max_concurrency=max_concurrency)else:manager=awaitmanager.awith_predictions(cast(ATARGET_T,target),max_concurrency=max_concurrency)ifsummary_evaluators:manager=awaitmanager.awith_summary_evaluators(summary_evaluators)else:ifevaluators:manager=awaitmanager.awith_evaluators(evaluators,max_concurrency=max_concurrency)ifsummary_evaluators:manager=awaitmanager.awith_summary_evaluators(summary_evaluators)results=AsyncExperimentResults(manager)ifblocking:awaitresults.wait()returnresultsclass_AsyncExperimentManager(_ExperimentManagerMixin):"""Manage the execution of experiments asynchronously. Supports lazily running predictions and evaluations in parallel to facilitate result streaming and early debugging. Args: data (DATA_T): The data used for the experiment. Can be a dataset name or ID OR a generator of examples. runs (Optional[Iterable[schemas.Run]]): The runs associated with the experiment predictions. experiment (Optional[schemas.TracerSession]): The tracer session associated with the experiment. experiment_prefix (Optional[str]): The prefix for the experiment name. description (Optional[str]): The description for the experiment. metadata (Optional[dict]): Additional metadata for the experiment. client (Optional[langsmith.Client]): The Langsmith client used for the experiment. evaluation_results (Optional[Iterable[EvaluationResults]]): The evaluation sresults for the experiment. summary_results (Optional[Iterable[EvaluationResults]]): The aggregate results for the experiment. num_repetitions (Optional[int], default=1): The number of repetitions for the experiment. include_attachments (Optional[bool], default=False): Whether to include attachments. This is used for when we pull the examples for the experiment. reuse_attachments (Optional[bool], default=False): Whether to reuse attachments from examples. This is True if we need to reuse attachments across multiple target/evaluator functions. upload_results (Optional[bool], default=True): Whether to upload results to Langsmith. attachment_raw_data_dict (Optional[dict]): A dictionary to store raw data for attachments. Only used if we reuse attachments across multiple target/evaluator functions. """def__init__(self,data:Union[DATA_T,AsyncIterable[schemas.Example]],/,experiment:Optional[Union[schemas.TracerSession,str]]=None,metadata:Optional[dict]=None,runs:Optional[Union[Iterable[schemas.Run],AsyncIterable[schemas.Run]]]=None,client:Optional[langsmith.Client]=None,evaluation_results:Optional[AsyncIterable[EvaluationResults]]=None,summary_results:Optional[AsyncIterable[EvaluationResults]]=None,description:Optional[str]=None,num_repetitions:int=1,include_attachments:bool=False,reuse_attachments:bool=False,upload_results:bool=True,attachment_raw_data_dict:Optional[dict]=None,):super().__init__(experiment=experiment,metadata=metadata,client=client,description=description,)self._data=dataself._examples:Optional[AsyncIterable[schemas.Example]]=Noneself._runs=(aitertools.ensure_async_iterator(runs)ifrunsisnotNoneelseNone)self._evaluation_results=evaluation_resultsself._summary_results=summary_resultsself._num_repetitions=num_repetitionsself._include_attachments=include_attachmentsself._reuse_attachments=reuse_attachmentsself._upload_results=upload_resultsself._attachment_raw_data_dict=attachment_raw_data_dictdef_reset_example_attachments(self,example:schemas.Example)->schemas.Example:"""Reset attachment readers for an example. This is only in the case that an attachment is going to be used by more than 1 callable (target + evaluators). In that case we keep a single copy of the attachment data in self._attachment_raw_data_dict, and create readers from that data. This makes it so that we don't have to keep copies of the same data in memory, instead we can just create readers from the same data. """ifnothasattr(example,"attachments")ornotexample.attachments:returnexamplenew_attachments:dict[str,schemas.AttachmentInfo]={}forname,attachmentinexample.attachments.items():if(self._attachment_raw_data_dictisnotNoneandstr(example.id)+nameinself._attachment_raw_data_dict):new_attachments[name]={"presigned_url":attachment["presigned_url"],"reader":io.BytesIO(self._attachment_raw_data_dict[str(example.id)+name]),"mime_type":attachment["mime_type"],}else:new_attachments[name]=attachment# Create a new Example instance with the updated attachmentsreturnschemas.Example(id=example.id,created_at=example.created_at,dataset_id=example.dataset_id,inputs=example.inputs,outputs=example.outputs,metadata=example.metadata,modified_at=example.modified_at,runs=example.runs,source_run_id=example.source_run_id,attachments=new_attachments,_host_url=example._host_url,_tenant_id=example._tenant_id,)asyncdefaget_examples(self)->AsyncIterator[schemas.Example]:ifself._examplesisNone:self._examples=_aresolve_data(self._data,client=self.client,include_attachments=self._include_attachments,)ifself._reuse_attachmentsandself._attachment_raw_data_dictisNone:examples_copy,self._examples=aitertools.atee(self._examples)self._attachment_raw_data_dict={str(e.id)+name:value["reader"].read()asyncforeinexamples_copyforname,valuein(e.attachmentsor{}).items()}ifself._num_repetitions>1:examples_list=[exampleasyncforexampleinself._examples]self._examples=async_chain_from_iterable([async_iter_from_list([self._reset_example_attachments(example)forexampleinexamples_list])for_inrange(self._num_repetitions)])self._examples,examples_iter=aitertools.atee(aitertools.ensure_async_iterator(self._examples),2,lock=asyncio.Lock())returnexamples_iterasyncdefget_dataset_id(self)->str:ifself._experimentisNoneornotgetattr(self._experiment,"reference_dataset_id",None):example=awaitaitertools.py_anext(awaitself.aget_examples())ifexampleisNone:raiseValueError("No examples found in the dataset.")returnstr(example.dataset_id)returnstr(self._experiment.reference_dataset_id)asyncdefaget_runs(self)->AsyncIterator[schemas.Run]:ifself._runsisNone:raiseValueError("Runs not loaded yet.")self._runs,runs=aitertools.atee(aitertools.ensure_async_iterator(self._runs),2,lock=asyncio.Lock())asyncforruninruns:yieldrunasyncdefaget_evaluation_results(self)->AsyncIterator[EvaluationResults]:ifself._evaluation_resultsisNone:asyncfor_inawaitself.aget_examples():yield{"results":[]}else:self._evaluation_results,evaluation_results=aitertools.atee(aitertools.ensure_async_iterator(self._evaluation_results),2,lock=asyncio.Lock(),)asyncforresultinevaluation_results:yieldresultasyncdefastart(self)->_AsyncExperimentManager:try:first_example=awaitaitertools.py_anext(awaitself.aget_examples())exceptStopAsyncIteration:raiseValueError("No examples found in the dataset. ""Please ensure the data provided to aevaluate is not empty.")ifnotfirst_example:raiseValueError("No examples found in the dataset.""Please ensure the data provided to aevaluate is not empty.")project=self._get_project(first_example)ifself._upload_resultselseNoneself._print_experiment_start(project,first_example)self._metadata["num_repetitions"]=self._num_repetitionsreturnself.__class__(awaitself.aget_examples(),experiment=project,metadata=self._metadata,client=self.client,runs=self._runs,evaluation_results=self._evaluation_results,include_attachments=self._include_attachments,reuse_attachments=self._reuse_attachments,upload_results=self._upload_results,attachment_raw_data_dict=self._attachment_raw_data_dict,)def_get_example_with_readers(self,example:schemas.Example)->schemas.Example:new_attachments:dict[str,schemas.AttachmentInfo]={}forname,attachmentin(example.attachmentsor{}).items():if(self._attachment_raw_data_dictisnotNoneandstr(example.id)+nameinself._attachment_raw_data_dict):reader=io.BytesIO(self._attachment_raw_data_dict[str(example.id)+name])new_attachments[name]={"presigned_url":attachment["presigned_url"],"reader":reader,"mime_type":attachment["mime_type"],}else:new_attachments[name]=attachmentreturnschemas.Example(id=example.id,created_at=example.created_at,dataset_id=example.dataset_id,inputs=example.inputs,outputs=example.outputs,metadata=example.metadata,modified_at=example.modified_at,runs=example.runs,source_run_id=example.source_run_id,attachments=new_attachments,_host_url=example._host_url,_tenant_id=example._tenant_id,)asyncdefawith_predictions_and_evaluators(self,target:ATARGET_T,evaluators:Sequence[Union[EVALUATOR_T,AEVALUATOR_T]],/,max_concurrency:Optional[int]=None,)->_AsyncExperimentManager:"""Run predictions and evaluations in a single pipeline. This allows evaluators to process results as soon as they're available from the target function, rather than waiting for all predictions to complete first. """evaluators=_resolve_evaluators(evaluators)ifnothasattr(self,"_evaluation_feedback_executor"):self._evaluation_feedback_executor=cf.ThreadPoolExecutor(max_workers=4)traceable_target=_ensure_async_traceable(target)asyncdefprocess_example(example:schemas.Example):# Yield the coroutine to be awaited laterpred=await_aforward(traceable_target,self._get_example_with_readers(example),self.experiment_name,self._metadata,self.client,_target_include_attachments(target),)example,run=pred["example"],pred["run"]result=awaitself._arun_evaluators(evaluators,{"run":run,"example":example,"evaluation_results":{"results":[]},},feedback_executor=self._evaluation_feedback_executor,)returnresultasyncdefprocess_examples():"""Create a single task per example. That task is to run the target function and all the evaluators sequentially. """asyncforexampleinawaitself.aget_examples():yieldprocess_example(example)awaitself._aend()# Run the per-example tasks with max-concurrency# This guarantees that max_concurrency is the upper limit# for the number of target/evaluators that can be run in parallelexperiment_results=aitertools.aiter_with_concurrency(max_concurrency,process_examples(),_eager_consumption_timeout=0.001,)r1,r2,r3=aitertools.atee(experiment_results,3,lock=asyncio.Lock())return_AsyncExperimentManager((result["example"]asyncforresultinr1),experiment=self._experiment,metadata=self._metadata,client=self.client,runs=(result["run"]asyncforresultinr2),evaluation_results=(result["evaluation_results"]asyncforresultinr3),summary_results=self._summary_results,include_attachments=self._include_attachments,upload_results=self._upload_results,)asyncdefawith_predictions(self,target:ATARGET_T,/,max_concurrency:Optional[int]=None,)->_AsyncExperimentManager:_experiment_results=self._apredict(target,max_concurrency=max_concurrency,include_attachments=_target_include_attachments(target),)r1,r2=aitertools.atee(_experiment_results,2,lock=asyncio.Lock())return_AsyncExperimentManager((pred["example"]asyncforpredinr1),experiment=self._experiment,metadata=self._metadata,client=self.client,runs=(pred["run"]asyncforpredinr2),include_attachments=self._include_attachments,upload_results=self._upload_results,)asyncdefawith_evaluators(self,evaluators:Sequence[Union[EVALUATOR_T,AEVALUATOR_T]],*,max_concurrency:Optional[int]=None,)->_AsyncExperimentManager:evaluators=_resolve_evaluators(evaluators)experiment_results=self._ascore(evaluators,max_concurrency=max_concurrency)r1,r2,r3=aitertools.atee(experiment_results,3,lock=asyncio.Lock())return_AsyncExperimentManager((result["example"]asyncforresultinr1),experiment=self._experiment,metadata=self._metadata,client=self.client,runs=(result["run"]asyncforresultinr2),evaluation_results=(result["evaluation_results"]asyncforresultinr3),summary_results=self._summary_results,include_attachments=self._include_attachments,upload_results=self._upload_results,)asyncdefawith_summary_evaluators(self,summary_evaluators:Sequence[SUMMARY_EVALUATOR_T],)->_AsyncExperimentManager:wrapped_evaluators=_wrap_summary_evaluators(summary_evaluators)aggregate_feedback_gen=self._aapply_summary_evaluators(wrapped_evaluators)return_AsyncExperimentManager(awaitself.aget_examples(),experiment=self._experiment,metadata=self._metadata,client=self.client,runs=self.aget_runs(),evaluation_results=self._evaluation_results,summary_results=aggregate_feedback_gen,include_attachments=self._include_attachments,upload_results=self._upload_results,)asyncdefaget_results(self)->AsyncIterator[ExperimentResultRow]:asyncforrun,example,evaluation_resultsinaitertools.async_zip(self.aget_runs(),awaitself.aget_examples(),self.aget_evaluation_results()):yieldExperimentResultRow(run=run,example=example,evaluation_results=evaluation_results,)asyncdefaget_summary_scores(self)->dict[str,list[dict]]:ifself._summary_resultsisNone:return{"results":[]}return{"results":[res# type: ignore[misc]asyncforresultsinself._summary_resultsforresinresults["results"]]}## Private methodsasyncdef_apredict(self,target:ATARGET_T,/,max_concurrency:Optional[int]=None,include_attachments:bool=False,)->AsyncIterator[_ForwardResults]:fn=_ensure_async_traceable(target)asyncdefpredict_all():asyncforexampleinawaitself.aget_examples():# Yield the coroutine to be awaited lateryield_aforward(fn,self._get_example_with_readers(example),self.experiment_name,self._metadata,self.client,include_attachments,)asyncforresultinaitertools.aiter_with_concurrency(max_concurrency,predict_all(),_eager_consumption_timeout=0.001):yieldresultawaitself._aend()asyncdef_ascore(self,evaluators:Sequence[RunEvaluator],max_concurrency:Optional[int]=None,)->AsyncIterator[ExperimentResultRow]:withcf.ThreadPoolExecutor(max_workers=4)asfeedback_executor:asyncdefscore_all():asyncforcurrent_resultsinself.aget_results():# Yield the coroutine to be awaited later in aiter_with_concurrencyyieldself._arun_evaluators(evaluators,current_results,feedback_executor=feedback_executor)asyncforresultinaitertools.aiter_with_concurrency(max_concurrency,score_all(),_eager_consumption_timeout=0.001):yieldresultasyncdef_arun_evaluators(self,evaluators:Sequence[RunEvaluator],current_results:ExperimentResultRow,feedback_executor:cf.ThreadPoolExecutor,)->ExperimentResultRow:current_context=rh.get_tracing_context()metadata={**(current_context["metadata"]or{}),**{"experiment":self.experiment_name},}withrh.tracing_context(**{**current_context,"project_name":"evaluators","metadata":metadata,"enabled":"local"ifnotself._upload_resultselseTrue,"client":self.client,}):run=current_results["run"]example=current_results["example"]eval_results=current_results["evaluation_results"]asyncdef_run_single_evaluator(evaluator:RunEvaluator):evaluator_run_id=uuid.uuid4()try:evaluator_response=awaitevaluator.aevaluate_run(# type: ignore[call-arg]run=run,example=self._get_example_with_readers(example),evaluator_run_id=evaluator_run_id,)selected_results=self.client._select_eval_results(evaluator_response)ifself._upload_results:self.client._log_evaluation_feedback(evaluator_response,run=run,_executor=feedback_executor)returnselected_resultsexceptExceptionase:try:feedback_keys=_extract_feedback_keys(evaluator)error_response=EvaluationResults(results=[EvaluationResult(key=key,source_run_id=evaluator_run_id,comment=repr(e),extra={"error":True},)forkeyinfeedback_keys])selected_results=self.client._select_eval_results(error_response)ifself._upload_results:self.client._log_evaluation_feedback(error_response,run=run,_executor=feedback_executor)returnselected_resultsexceptExceptionase2:logger.debug(f"Error parsing feedback keys: {e2}")passlogger.error(f"Error running evaluator {repr(evaluator)} on"f" run {run.id}: {repr(e)}",exc_info=True,)all_results=[]forevaluatorinevaluators:all_results.append(await_run_single_evaluator(evaluator))forresultinall_results:ifresultisnotNone:eval_results["results"].extend(result)returnExperimentResultRow(run=run,example=example,evaluation_results=eval_results,)asyncdef_aapply_summary_evaluators(self,summary_evaluators:Sequence[SUMMARY_EVALUATOR_T])->AsyncIterator[EvaluationResults]:runs,examples=[],[]async_examples=aitertools.ensure_async_iterator(awaitself.aget_examples())asyncforrun,exampleinaitertools.async_zip(self.aget_runs(),async_examples):runs.append(run)examples.append(example)aggregate_feedback=[]project_id=self._get_experiment().idifself._upload_resultselseNonecurrent_context=rh.get_tracing_context()metadata={**(current_context["metadata"]or{}),**{"experiment":self.experiment_name,"experiment_id":project_id,},}withrh.tracing_context(**{**current_context,"project_name":"evaluators","metadata":metadata,"enabled":"local"ifnotself._upload_resultselseTrue,"client":self.client,}):forevaluatorinsummary_evaluators:try:summary_eval_result=evaluator(runs,examples)flattened_results=self.client._select_eval_results(summary_eval_result,fn_name=evaluator.__name__,)aggregate_feedback.extend(flattened_results)ifself._upload_results:forresultinflattened_results:feedback=result.dict(exclude={"target_run_id"})evaluator_info=feedback.pop("evaluator_info",None)awaitaitertools.aio_to_thread(self.client.create_feedback,**feedback,run_id=None,project_id=project_id,source_info=evaluator_info,)exceptExceptionase:logger.error(f"Error running summary evaluator {repr(evaluator)}: {e}",exc_info=True,)yield{"results":aggregate_feedback}asyncdef_get_dataset_version(self)->Optional[str]:modified_at=[]asyncforexampleinawaitself.aget_examples():ifexample.modified_at:# Should always be defined in practice when fetched,# but the typing permits Nonemodified_at.append(example.modified_at)max_modified_at=max(modified_at)ifmodified_atelseNonereturnmax_modified_at.isoformat()ifmax_modified_atelseNoneasyncdef_get_dataset_splits(self)->Optional[list[str]]:splits=set()asyncforexampleinawaitself.aget_examples():if(example.metadataandexample.metadata.get("dataset_split")andisinstance(example.metadata["dataset_split"],list)):forsplitinexample.metadata["dataset_split"]:ifisinstance(split,str):splits.add(split)else:splits.add("base")returnlist(splits)asyncdef_aend(self)->None:ifnotself._upload_results:returnexperiment=self._experimentifexperimentisNone:raiseValueError("Experiment not started yet.")project_metadata=self._get_experiment_metadata()project_metadata["dataset_version"]=awaitself._get_dataset_version()project_metadata["dataset_splits"]=awaitself._get_dataset_splits()self.client.update_project(experiment.id,metadata={**experiment.metadata,**project_metadata,},)
asyncdef_aforward(fn:rh.SupportsLangsmithExtra[[dict],Awaitable],example:schemas.Example,experiment_name:str,metadata:dict,client:langsmith.Client,include_attachments:bool=False,)->_ForwardResults:run:Optional[schemas.RunBase]=Nonedef_get_run(r:run_trees.RunTree)->None:nonlocalrunrun=rwithrh.tracing_context(enabled=True):try:arg_names=_get_target_args(fn)args=[getattr(example,argn)forargninarg_names]awaitfn(*args,langsmith_extra=rh.LangSmithExtra(reference_example_id=example.id,on_end=_get_run,project_name=experiment_name,metadata={**metadata,"example_version":(example.modified_at.isoformat()ifexample.modified_atelseexample.created_at.isoformat()),},client=client,),)exceptExceptionase:logger.error(f"Error running target function: {e}",exc_info=True,stacklevel=1)return_ForwardResults(run=cast(schemas.Run,run),example=example,)def_ensure_async_traceable(target:ATARGET_T,)->rh.SupportsLangsmithExtra[[dict],Awaitable]:ifnotasyncio.iscoroutinefunction(target)andnot_is_langchain_runnable(target):ifcallable(target):raiseValueError("Target must be an async function. For sync functions, use evaluate."" Example usage:\n\n""async def predict(inputs: dict) -> dict:\n"" # do work, like chain.invoke(inputs)\n"" return {...}\n""await aevaluate(predict, ...)")else:raiseValueError("Target must be a callable async function. ""Received a non-callable object. Example usage:\n\n""async def predict(inputs: dict) -> dict:\n"" # do work, like chain.invoke(inputs)\n"" return {...}\n""await aevaluate(predict, ...)")ifrh.is_traceable_function(target):returntarget# type: ignoreelse:if_is_langchain_runnable(target):target=target.ainvoke# type: ignore[union-attr]returnrh.traceable(name="AsyncTarget")(target)# type: ignore[arg-type]def_aresolve_data(data:Union[DATA_T,AsyncIterable[schemas.Example]],*,client:langsmith.Client,include_attachments:bool=False,)->AsyncIterator[schemas.Example]:"""Return the examples for the given dataset."""ifisinstance(data,AsyncIterable):returnaitertools.ensure_async_iterator(data)returnaitertools.ensure_async_iterator(_resolve_data(data,client=client,include_attachments=include_attachments))T=TypeVar("T")
[docs]asyncdefasync_iter_from_list(examples:list[schemas.Example],)->AsyncIterable[schemas.Example]:"""Convert a list of examples to an async iterable."""forexampleinexamples:yieldexample