"""Make approximate assertions as "expectations" on test results.
This module is designed to be used within test cases decorated with the
`@pytest.mark.decorator` decorator
It allows you to log scores about a test case and optionally make assertions that log as
"expectation" feedback to LangSmith.
Example usage:
.. code-block:: python
import pytest
from langsmith import expect
@pytest.mark.langsmith
def test_output_semantically_close():
response = oai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Say hello!"},
],
)
response_txt = response.choices[0].message.content
# Intended usage
expect.embedding_distance(
prediction=response_txt,
reference="Hello!",
).to_be_less_than(0.9)
# Score the test case
matcher = expect.edit_distance(
prediction=response_txt,
reference="Hello!",
)
# Apply an assertion and log 'expectation' feedback to LangSmith
matcher.to_be_less_than(1)
# You can also directly make assertions on values directly
expect.value(response_txt).to_contain("Hello!")
# Or using a custom check
expect.value(response_txt).against(lambda x: "Hello" in x)
# You can even use this for basic metric logging within tests
expect.score(0.8)
expect.score(0.7, key="similarity").to_be_greater_than(0.7)
""" # noqa: E501
from __future__ import annotations
import atexit
import inspect
from typing import (
TYPE_CHECKING,
Any,
Callable,
Literal,
Optional,
Union,
overload,
)
from langsmith import client as ls_client
from langsmith import run_helpers as rh
from langsmith import run_trees as rt
from langsmith import utils as ls_utils
if TYPE_CHECKING:
from langsmith._internal._edit_distance import EditDistanceConfig
from langsmith._internal._embedding_distance import EmbeddingConfig
# Sentinel class used until PEP 0661 is accepted
class _NULL_SENTRY:
"""A sentinel singleton class used to distinguish omitted keyword arguments
from those passed in with the value None (which may have different behavior).
""" # noqa: D205
def __bool__(self) -> Literal[False]:
return False
def __repr__(self) -> str:
return "NOT_GIVEN"
NOT_GIVEN = _NULL_SENTRY()
class _Matcher:
"""A class for making assertions on expectation values."""
def __init__(
self,
client: Optional[ls_client.Client],
key: str,
value: Any,
_executor: Optional[ls_utils.ContextThreadPoolExecutor] = None,
run_id: Optional[str] = None,
):
self._client = client
self.key = key
self.value = value
self._executor = _executor or ls_utils.ContextThreadPoolExecutor(max_workers=3)
rt = rh.get_current_run_tree()
self._run_id = rt.trace_id if rt else run_id
def _submit_feedback(self, score: int, message: Optional[str] = None) -> None:
if not ls_utils.test_tracking_is_disabled():
if not self._client:
self._client = rt.get_cached_client()
self._executor.submit(
self._client.create_feedback,
run_id=self._run_id,
key="expectation",
score=score,
comment=message,
)
def _assert(self, condition: bool, message: str, method_name: str) -> None:
try:
assert condition, message
self._submit_feedback(1, message=f"Success: {self.key}.{method_name}")
except AssertionError as e:
self._submit_feedback(0, repr(e))
raise e from None
def to_be_less_than(self, value: float) -> None:
"""Assert that the expectation value is less than the given value.
Args:
value: The value to compare against.
Raises:
AssertionError: If the expectation value is not less than the given value.
"""
self._assert(
self.value < value,
f"Expected {self.key} to be less than {value}, but got {self.value}",
"to_be_less_than",
)
def to_be_greater_than(self, value: float) -> None:
"""Assert that the expectation value is greater than the given value.
Args:
value: The value to compare against.
Raises:
AssertionError: If the expectation value is not
greater than the given value.
"""
self._assert(
self.value > value,
f"Expected {self.key} to be greater than {value}, but got {self.value}",
"to_be_greater_than",
)
def to_be_between(self, min_value: float, max_value: float) -> None:
"""Assert that the expectation value is between the given min and max values.
Args:
min_value: The minimum value (exclusive).
max_value: The maximum value (exclusive).
Raises:
AssertionError: If the expectation value
is not between the given min and max.
"""
self._assert(
min_value < self.value < max_value,
f"Expected {self.key} to be between {min_value} and {max_value},"
f" but got {self.value}",
"to_be_between",
)
def to_be_approximately(self, value: float, precision: int = 2) -> None:
"""Assert that the expectation value is approximately equal to the given value.
Args:
value: The value to compare against.
precision: The number of decimal places to round to for comparison.
Raises:
AssertionError: If the rounded expectation value
does not equal the rounded given value.
"""
self._assert(
round(self.value, precision) == round(value, precision),
f"Expected {self.key} to be approximately {value}, but got {self.value}",
"to_be_approximately",
)
def to_equal(self, value: float) -> None:
"""Assert that the expectation value equals the given value.
Args:
value: The value to compare against.
Raises:
AssertionError: If the expectation value does
not exactly equal the given value.
"""
self._assert(
self.value == value,
f"Expected {self.key} to be equal to {value}, but got {self.value}",
"to_equal",
)
def to_be_none(self) -> None:
"""Assert that the expectation value is None.
Raises:
AssertionError: If the expectation value is not None.
"""
self._assert(
self.value is None,
f"Expected {self.key} to be None, but got {self.value}",
"to_be_none",
)
def to_contain(self, value: Any) -> None:
"""Assert that the expectation value contains the given value.
Args:
value: The value to check for containment.
Raises:
AssertionError: If the expectation value does not contain the given value.
"""
self._assert(
value in self.value,
f"Expected {self.key} to contain {value}, but it does not",
"to_contain",
)
# Custom assertions
def against(self, func: Callable, /) -> None:
"""Assert the expectation value against a custom function.
Args:
func: A custom function that takes the expectation value as input.
Raises:
AssertionError: If the custom function returns False.
"""
func_signature = inspect.signature(func)
self._assert(
func(self.value),
f"Assertion {func_signature} failed for {self.key}",
"against",
)
[docs]
class _Expect:
"""A class for setting expectations on test results."""
[docs]
def __init__(self, *, client: Optional[ls_client.Client] = None):
self._client = client
self.executor = ls_utils.ContextThreadPoolExecutor(max_workers=3)
atexit.register(self.executor.shutdown, wait=True)
[docs]
def embedding_distance(
self,
prediction: str,
reference: str,
*,
config: Optional[EmbeddingConfig] = None,
) -> _Matcher:
"""Compute the embedding distance between the prediction and reference.
This logs the embedding distance to LangSmith and returns a `_Matcher` instance
for making assertions on the distance value.
By default, this uses the OpenAI API for computing embeddings.
Args:
prediction: The predicted string to compare.
reference: The reference string to compare against.
config: Optional configuration for the embedding distance evaluator.
Supported options:
- `encoder`: A custom encoder function to encode the list of input
strings to embeddings. Defaults to the OpenAI API.
- `metric`: The distance metric to use for comparison.
Supported values: "cosine", "euclidean", "manhattan",
"chebyshev", "hamming".
Returns:
A `_Matcher` instance for the embedding distance value.
Examples:
>>> expect.embedding_distance(
... prediction="hello",
... reference="hi",
... ).to_be_less_than(1.0)
""" # noqa: E501
from langsmith._internal._embedding_distance import EmbeddingDistance
config = config or {}
encoder_func = "custom" if config.get("encoder") else "openai"
evaluator = EmbeddingDistance(config=config)
score = evaluator.evaluate(prediction=prediction, reference=reference)
src_info = {"encoder": encoder_func, "metric": evaluator.distance}
self._submit_feedback(
"embedding_distance",
{
"score": score,
"source_info": src_info,
"comment": f"Using {encoder_func}, Metric: {evaluator.distance}",
},
)
return _Matcher(
self._client, "embedding_distance", score, _executor=self.executor
)
[docs]
def edit_distance(
self,
prediction: str,
reference: str,
*,
config: Optional[EditDistanceConfig] = None,
) -> _Matcher:
"""Compute the string distance between the prediction and reference.
This logs the string distance (Damerau-Levenshtein) to LangSmith and returns
a `_Matcher` instance for making assertions on the distance value.
This depends on the `rapidfuzz` package for string distance computation.
Args:
prediction: The predicted string to compare.
reference: The reference string to compare against.
config: Optional configuration for the string distance evaluator.
Supported options:
- `metric`: The distance metric to use for comparison.
Supported values: "damerau_levenshtein", "levenshtein",
"jaro", "jaro_winkler", "hamming", "indel".
- `normalize_score`: Whether to normalize the score between 0 and 1.
Returns:
A `_Matcher` instance for the string distance value.
Examples:
>>> expect.edit_distance("hello", "helo").to_be_less_than(1)
"""
from langsmith._internal._edit_distance import EditDistance
config = config or {}
metric = config.get("metric") or "damerau_levenshtein"
normalize = config.get("normalize_score", True)
evaluator = EditDistance(config=config)
score = evaluator.evaluate(prediction=prediction, reference=reference)
src_info = {"metric": metric, "normalize": normalize}
self._submit_feedback(
"edit_distance",
{
"score": score,
"source_info": src_info,
"comment": f"Using {metric}, Normalize: {normalize}",
},
)
return _Matcher(
self._client,
"edit_distance",
score,
_executor=self.executor,
)
[docs]
def value(self, value: Any) -> _Matcher:
"""Create a `_Matcher` instance for making assertions on the given value.
Args:
value: The value to make assertions on.
Returns:
A `_Matcher` instance for the given value.
Examples:
>>> expect.value(10).to_be_less_than(20)
"""
return _Matcher(self._client, "value", value, _executor=self.executor)
[docs]
def score(
self,
score: Union[float, int, bool],
*,
key: str = "score",
source_run_id: Optional[ls_client.ID_TYPE] = None,
comment: Optional[str] = None,
) -> _Matcher:
"""Log a numeric score to LangSmith.
Args:
score: The score value to log.
key: The key to use for logging the score. Defaults to "score".
Examples:
>>> expect.score(0.8) # doctest: +ELLIPSIS
<langsmith._expect._Matcher object at ...>
>>> expect.score(0.8, key="similarity").to_be_greater_than(0.7)
"""
self._submit_feedback(
key,
{
"score": score,
"source_info": {"method": "expect.score"},
"source_run_id": source_run_id,
"comment": comment,
},
)
return _Matcher(self._client, key, score, _executor=self.executor)
## Private Methods
@overload
def __call__(self, value: Any, /) -> _Matcher: ...
@overload
def __call__(self, /, *, client: ls_client.Client) -> _Expect: ...
def __call__(
self,
value: Optional[Any] = NOT_GIVEN,
/,
client: Optional[ls_client.Client] = None,
) -> Union[_Expect, _Matcher]:
expected = _Expect(client=client)
if value is not NOT_GIVEN:
return expected.value(value)
return expected
def _submit_feedback(self, key: str, results: dict):
current_run = rh.get_current_run_tree()
run_id = current_run.trace_id if current_run else None
if not ls_utils.test_tracking_is_disabled():
if not self._client:
self._client = rt.get_cached_client()
self.executor.submit(
self._client.create_feedback, run_id=run_id, key=key, **results
)
expect = _Expect()
__all__ = ["expect"]