_expect
#
Make approximate assertions as “expectations” on test results.
This module is designed to be used within test cases decorated with the @pytest.mark.decorator decorator It allows you to log scores about a test case and optionally make assertions that log as “expectation” feedback to LangSmith.
- Example usage:
import pytest from langsmith import expect @pytest.mark.langsmith def test_output_semantically_close(): response = oai_client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Say hello!"}, ], ) response_txt = response.choices[0].message.content # Intended usage expect.embedding_distance( prediction=response_txt, reference="Hello!", ).to_be_less_than(0.9) # Score the test case matcher = expect.edit_distance( prediction=response_txt, reference="Hello!", ) # Apply an assertion and log 'expectation' feedback to LangSmith matcher.to_be_less_than(1) # You can also directly make assertions on values directly expect.value(response_txt).to_contain("Hello!") # Or using a custom check expect.value(response_txt).against(lambda x: "Hello" in x) # You can even use this for basic metric logging within tests expect.score(0.8) expect.score(0.7, key="similarity").to_be_greater_than(0.7)
Classes
|
A class for setting expectations on test results. |